status_dt	question	no	ans
1 2019-01-22	Выберите варианты правильного ответа. Что будет выдано фрагментом программы: MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); tag=rank; x=rank; if (!rank){ MPI_Send(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); MPI_Recv(&x, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat); printf(" %dn",x); } if (rank == 1) { MPI_Send(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); MPI_Recv(&x, 1, MPI_INT, 0, tag, MPI_COMM_WORLD); MPI_Recv(&x, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat); }	1	0
		2	1
		3	Значение не определено
		4	Программа завершится с ошибкой
2	Что будет выдано при выполнении программы на 4-ех	1	0
2019-01-22	npoueccopax: int size, rank, tag, count; int x=0,y; MPI_Status stat; MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD, &size);	2	1
		3	2
	MPI_Comm_rank(MPI_COMM_WORLD, & amp;rank); count=rank; x=rank; MPI_Allreduce (& amp;x,& amp;y,count, MPI_INT,	4	3
	MPI_SUM, MPI_COMM_WORLD); if (!rank) printf(" %dn",x);	5	5
	MPI_Finalize();	6	6
		7	Значение не определено
		8	Программа завершится с ошибкой
3 2019-01-22	Что будет выдано фрагментом программы: int size, rank, tag;	1	1
2019-01-22	int x; MPI_Status stat; MPI_Request request; MPI_Init(&arqc,&arqv);	2	0
	MPI_Comm_size(MPI_COMM_WORLD, & amp; size);	3	0 или 1
	MPI_Comm_rank(MPI_COMM_WORLD, & amp;rank); tag=rank; x=rank; if (!rank) MPI_Send(& amp;x, 1, MPI_INT, 1, 0,	4	Программа ничего не выдаст
	MPI_COMM_WORLD); if (rank == 1) { MPI_Irecv(&x, 1,	5	Программа может завершиться с ошибкой
	MPI_INT, 0, 0, MPI_COMM_WORLD, & amp; stat, & amp; request); printf(" %dn",x); } MPI_Finalize(); }	6	Программа завершится с ошибкой
4	Что будет выдано при выполнении программы на 4-ех	1	0
2019-01-22	процессорах: #include "mpi.h" #include <stdio.h> #include</stdio.h>		4
	<pre><stdlib.h> int main (int argc, char *argv[]) { int size, rank, tag, count,i; int x[100],y[100]; MPI_Status stat; MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); count=rank; root = 1; if (rank==root) for (i=0;i<size; %dn",y[0]);="" (rank="=size-1)" count,="" count,mpi_int,="" if="" mpi_finalize();="" mpi_int,="" mpi_scatter(x,="" pre="" printf("="" root,mpi_comm_world);="" x[i++]="i*size);" y,="" ="" <="" }=""></size;></stdlib.h></pre>		
			8
		4	12
		5	Значение не определено
		6	Программа завершится с ошибкой — правильный ответ
5 2019-01-22	Отметьте правильные утверждения. Функция MPI_Recv завершится успешно при выполнении следующих условий:	1	Размер буфера должен быть равен размеру отправленного сообщения
		2	Буфер памяти должен быть достаточным для приема сообщения
		3	Тип элементов передаваемого и принимаемого сообщения должны совпадать
		4	Тип принятого сообщения может быть равен MPI_ANY_TYPE
		5	Сообщение может быть принято только от определенного процесса
		6	Сообщение может быть принято от любого процесса
		7	Сообщение может быть принято от любого процесса, входящего в коммуникатор, заданный в функции
6 2019-01-22	Что будет выдано при выполнении фрагмента программы: MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); if (rank == 0){ strcpy(message, "Hello"); MPI_Recv(message, 30, MPI_CHAR, 1, type, MPI_COMM_WORLD, &status); MPI_Send(message, 30, MPI_CHAR, 1, type, MPI_COMM_WORLD); }else if (rank == 1){ MPI_Recv(message, 30, MPI_CHAR, 0, type, MPI_COMM_WORLD, &status); MPI_Send(message, 30, MPI_CHAR, 0, type, MPI_COMM_WORLD); } printf("%sn", message); MPI_Finalize(); 	1	Процесс 0 выведет в stdout Hello
		2	Процесс 1 выведет в stdout Hello
		3	Программа завершится с ошибкой
		4	Оба процесса выведут в stdout Hello
7	W		
7	Параллельна структура модели прогноза погоды ПЛАВ	1	1D-MPI декомпозиции по долготе
7 2019-01-22	Параллельна структура модели прогноза погоды ПЛАВ реализуется на основе использования подхода(подходов):		1D-MPI декомпозиции по долготе 2D-MPI декомпозиции по широте
		2	

status_dt	question	no	ans
		5	OpenMP по широте
		6	1D-MPI декомпозиции по широте
		7	2D-MPI декомпозиции по долготе
		8	3D-MPI декомпозиции по долготе
8 2019-01-22	Что означает ансамблевый подход к прогнозированию погоды:	1	Реализация расчетов выполняется с одновременным использованием параллельных технологий MPI и OpenMP
		2	Проведение расчета нескольких десятков долгосрочных прогнозов, которые затем усредняются
		3	Расчет прогноза выполняется ансамблем параллельных процессов
9 2019-01-22	Задача Неймана для уравнения Лапласа	1	имеет единственное решение
2013 01 22		2	является невырожденной, поскольку в однородном случае имеет только тривиальное решение
		3	имеет бесконечно много решений при любых значениях граничного условия
		4	является условно разрешимой
10 2019-01-22	Указать неверное утверждение. Метод скорейшего спуска	1	является одношаговым итерационным методом решения системы линейных алгебраических уравнений (СЛАУ)
		2	сходится к точному решению СЛАУ с квадратной симметричной положительно определенной матрицей при любом начальном приближении
		3	является методом вариационного типа
		4	сходится быстрее метода сопряженных градиентов, так как является его обобщением
11 2019-01-22	Какие обычно достигаются проценты от теоретического пика в	1	HPCG – несколько % от пика, HPL – 70-80% и более
2017 01 22	тестах производительности суперкомпьютеров HPCG и HPL?	2	HPL – несколько % от пика, HPCG – 70-80% и более
		3	У HPCG и HPL примерно одинаковые уровни в несколько % от пика из-за нехватки пропускной способности памяти
		4	У HPCG и HPL примерно одинаковые уровни в районе 70- 80% от пика благодаря высокой интенсивности вычислений
12 2019-01-22	Выберите правильный ответ. Подход DES к моделированию турбулентных течений реализует:	1	Моделируются турбулентные структуры всех масштабов, от крупных вихрей до мелких
		2	Крупные вихри воспроизводятся численно, мелкие вихри моделируются
		3	Турбулентные структуры всех масштабов воспроизводятся численно
		4	Крупные оторвавшиеся вихри воспроизводятся численно, мелкие вихри моделируются, но вблизи твердых поверхностей моделируются вихри всех масштабов
13 2019-01-22	Выберите правильный ответ. Подход RANS к моделированию турбулентных течений реализует:	1	Моделируются турбулентные структуры всех масштабов, от крупных вихрей до мелких
		2	Крупные вихри воспроизводятся численно, мелкие вихри моделируются
		3	Турбулентные структуры всех масштабов воспроизводятся численно
		4	Крупные оторвавшиеся вихри воспроизводятся численно, мелкие вихри моделируются, но вблизи твердых поверхностей моделируются вихри всех масштабов
14 2019-01-22	Выберите правильный ответ. Подход LES к моделированию турбулентных течений реализует	1	Моделируются турбулентные структуры всех масштабов, от крупных вихрей до мелких
		2	Крупные вихри воспроизводятся численно, мелкие вихри моделируются
		3	Турбулентные структуры всех масштабов воспроизводятся численно
		4	Крупные оторвавшиеся вихри воспроизводятся численно, мелкие вихри моделируются, но вблизи твердых поверхностей моделируются вихри всех масштабов
15 2019-01-22	Выберите правильный ответ. Подход DNS к моделированию турбулентных течений реализует:	1	Моделируются турбулентные структуры всех масштабов, от крупных вихрей до мелких

		2	Крупные вихри воспроизводятся численно, мелкие вихри
			моделируются
		3	Турбулентные структуры всех масштабов воспроизводятся численно
		4	Крупные оторвавшиеся вихри воспроизводятся численно, мелкие вихри моделируются, но вблизи твердых поверхностей моделируются вихри всех масштабов
16 2019-01-22	Каковы современные тенденции в развитии вычислительных устройств – процессоров и ускорителей?	1	пиковая производительность растет значительно быстрее, чем пропускная способность памяти
		2	пропускная способность памяти растет значительно быстрее чем пиковая производительность
		3	пропускная способность памяти и производительность растут примерно одинаково, чтобы устройства были хорошо сбалансированы
		4	рост производительности и пропускной способности практически прекратился из-за достижения предела увеличения тактовой частоты
17 2019-01-22	Чем графический процессор GPU отличается от центрального процессора CPU? Выберите правильные варианты	1	У GPU существенно выше пропускная способность памяти
		2	У CPU существенно выше пропускная способность памяти
		3	У GPU обычно намного больше памяти, чем у CPU
		4	GPU работает так же, как и CPU, но у GPU намного больше ядер, а сами ядра проще устроены – меньше регистров, проще конвейер.
		5	GPU реализует принципиально иной тип параллелизма, ядра CPU и ядра GPU — это совсем разные вещи
18 2019-01-22	<div style="text-align: left;"> Что такое конвекция Рэлея — Бенара? </div>	1	вынужденная конвекция, вызванная внешним перепадом давления
		2	стественная конвекция, вызванная горизонтальным градиентом температуры
		3	вынужденная конвекция, вызванная колебательным движением твердой поверхности
		4	естественная конвекция, вызванная вертикальным градиентом температуры
19 2019-01-22	Чему равна ширина бисекционной плоскости 2D-тора 4x3?	1	12
-019 01		2	6
		3	4
		4	3
20 2019-01-22	Как обеспечивается выполнение длительного крупного расчета на суперкомпьютере?	1	Путем периодической записи на файловую систему полного дампа данных процесса, находящихся в оперативной памяти чтобы работа процесса могла быть возобновлена после остановки.
		2	Путем периодической записи на файловую систему минимального набора данных, необходимых для восстановления расчета. С целью экономии дискового пространства хранится только один самый последний набор данных.
		3	Путем периодической поочередной записи в два различных набора файлов минимального набора данных, необходимых для восстановления расчета.
		4	Путем периодической записи каждый раз в новый набор файлов минимального набора данных, необходимых для восстановления расчета.
21	Какое количество коммутаторов необходимо для построения	1	3
2019-01-22	высокоскоростной сети Mellanox Infiniband EDR с половинной от максимально возможной бисекционной пропускной способностью (half bisection) для суперкомпьютера из 96	2	4
		3	5
	вычислительных узлов, если для этого используются только 36-портовые коммутаторы?	4	6
		5	7
		6	8
22	Какое количество коммутаторов необходимо для построения	1	3

status_dt	максимально возможной биспеционной пропускной	no	ans
	способностью (half bisection) для суперкомпьютера из 128 вычислительных узлов, если для этого используются только	2	4
	48-портовые коммутаторы?	3	5
		4	6
			7
			8
		-	
3)19-01-22	Какое количество нерегулярных обращений к памяти произойдет при последовательной обработке (см. код ниже)		n
	одним программным потоком всего графа G(V =n, E =m),	2	m
	который хранится в формате CRS? for (int $u = 0$; $u < G > n$;	3	n+m
	$ u++\rangle$ { for (int j = G->rowsIndices[u]; j < rowsIndices[u+1]; j++\	4	2n
	1)1	5	2n+m
4	Перечислите эффекты, которые обычно возникают при	1	Уменьшается количество кэш-промахов
019-01-22	обработке разреженной матрицы на вычислительной системе	2	Списки смежных вершин сортируются
	после применения алгоритма Reverse Cuthill-McKee.		Уменьшается время обработки матрицы
			Увеличивается время обработки матрицы
5)19-01-22	Выберете все верные утверждения относительно следующего кода, при условии, что st1, st2 отличны от потока по умолчанию, а ядро меняет массив arr1: строка1-cudaMemcpyAsync(arr1, arr2, count, cudaMemcpyHostToDevice,	1	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1
	st1); строка2- kernel<< <count 0,="" 256,="" st2="">>>(arr1, arr3, count); строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); </count>	2	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2
		3	ядро выполнится параллельно с компированиями в строке1 и строке3
		4	ядро выполнится только после завершения копирования в строке1
		5	копирование в строке3 выполнится только после копирования в строке1
6 019-01-22	Выберете все верные утверждения относительно следующего кода, при условии, что st1, st2 отличны от потока по умолчанию, а ядро меняет массив arr1: строка1- cudaMemcpy (arr1, arr2, count, cudaMemcpyHostToDevice); строка2-kernel<< <count 0,="" 256,="" st2="">>>(arr1, arr3, count); строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); </count>	1	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1
		2	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2
		3	ядро выполнится параллельно с компированием в строке3
		4	ядро выполнится только после завершения копирования в строке1
		5	копирование в строке3 выполнится только после копирования в строке1
27 2019-01-22	умолчанию, а ядро меняет массив arr1: строка1- cudaMemcpyAsync (arr1, arr2, count, cudaMemcpyHostToDevice);	1	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1
	строка2- kernel<< <count 0,="" 256,="" st2="">>>(arr1, arr3, count); строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); </count>	2	 2 Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2
		3	ядро выполнится параллельно с копированием в строке3
		4	ядро выполнится только после завершения копирования в строке1
		5	копирование в строке3 выполнится только после копирования в строке1
8 019-01-22	Выберете все верные утверждения относительно следующего кода, при условии, что st1, st2 отличны от потока по умолчанию, а ядро меняет массив arr1: строка1-cudaMemcpyAsync(arr1, arr2, count, cudaMemcpyHostToDevice, st1): строка2- kernel< < count / 256, 256, 0, st2 >>>(arr1)	1	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке1
	st1); строка2- kernel<< <count 0,="" 256,="" st2="">>>(arr1, arr3, count); строка3- cudaMemcpyAsync(arr2, arr1, count, cudaMemcpyDeviceToHost, st1); </count>		

status_dt	question	no	ans
		2	Значения элементов массива arr2 после завершения функции в строке3 будут совпадать со значениями элементов массива arr1, полученные после завершения функции в строке2
		3	ядро выполнится параллельно с копированиями в строке1 и строке3
		4	ядро выполнится только после завершения копирования в строке1
		5	копирование в строке3 выполнится только после копирования в строке1
29	Отметьте все верные факты про вызов данной функции	1	Происходит копирование данных с ГПУ на ЦПУ
2019-01-22	cudaMemcpyAsync(array1, array2, count * 1024,		Происходит копирование данных с ЦПУ на ГПУ
	cudaMemcpyDeviceToDevice):		Происходит копирование данных с ГПУ на ГПУ
		4	Происходит копирование данных из массива array2 в массив array1
		5	Происходит копирование данных из массива array1 в массив array2
		6	Копируется count байт
			Копируется count килобайт
			Операция асинхронна
30 2019-01-22	Отметьте все верные факты про технологию CUDA:	1	Это программно-аппаратная архитектура параллельных вычислений, позволяющая значительно ускорить код с использованием GPU NVidia
		2	CUDA является расширением стандартных языков C/C++
		3	CUDA является новым языком программирования на базе C/C++
		4	CUDA является расширением стандартного языка Fortran
		5	CUDA является расширением стандартных языков Java/C#/Pyton
		6	Это программно-аппаратная архитектура параллельных вычислений, позволяющая значительно ускорить код с использованием любых GPU.
31 2019-01-22	Отметьте все верные факты в отношении GPU Nvidia:	1	Скорость глобальной памяти ГПУ выше, чем RAM память ЦПУ
		2	Скорость вычислений ГПУ в двойной точности такая же, как и скорость вычислений в одинарной точности
		3	Размер кэш памяти ГПУ соответствует размеру кэша ЦПУ последних поколений
		4	ГПУ является сопроцессором
32 2019-01-22	Максимальное число процессов, которые можно запустить на	1	1
2017 01 22	одном узле Blue Gene/P:	2	2
		3	4
		4	8
		5	16
		6	32
		7	Число процессов не ограничено
33 2019-01-22	На суперкомпьютере Blue Gene/Р можно использовать следующие технологии параллельного программирования:	1	только МРІ
			MPI+OpenMP
		-	MPI+Pthreads
		_	MPI+CUDA
34 2019-01-22	Какое максимальное число потоков можно использовать в параллельной программе для Blue Gene/P при запуске на 1024 узлах :	1	
		2	512
			2048
		5	4096

status_dt	question	no	ans
		6	3072
		7	8096
		8	128
		9	Число потоков неограничено
35	Пересылка данных в программе для Blue Gene/P, выполненная	1	Объем передаваемых данных должен превышать 512 байт
2019-01-22	с использованием функции MPI_Bcast, будет выполнена с использованием сети «дерево» при выполнении	2	Для любых объемов передаваемых данных
	следующих условий:	3	Программа должна быть запущена на числе процессов, кратных 512
		4	Для коммуникатора MPI_COMM_WORLD
		5	Для любых коммуникаторов
36	Какой объем оперативной памяти, доступной процессу,	1	512 MB
2019-01-22	достигается при запуске параллельных программ на Blue Gene/P в режиме VN:	2	1024 MB
	General B permine viii	3	2 GB
		4	4 GB
		5	1024 GB
37	Каков порядок вычислительной мощности алгоритма	1	O(1)
2019-01-22	перемножения плотных квадратных матриц?	2	O(n)
			O(n^2)
			O(n^3)
			правильного ответа нет
38	Каким параллелизмом обладает фрагмент программы:	1	
2019-01-22	for(i=1; i <= n; ++i) for(j=1; j <= m; ++j) A[i][j] = (A[i-1][j] *	2	
	A[i][j-1])/2;	3	
		_	
		4	
20			не обладает
39 2019-01-22	Отметьте верные утверждения про локальность данных:		свойство локальности данных характеризует качество алгоритма
			свойство локальности данных характеризует качество программной реализации
			пространственная локальность показывает, насколько близко друг к другу расположены различные данные
			временная локальность показывает, насколько часто происходят обращения к одним и тем же данным
		5	тест Random Access обладает хорошей пространственной локальностью
40 2019-01-22	Какой будет архитектура большинства вновь создаваемых суперкомпьютеров? Почему?	1	Традиционные монолитные, типа Blue Gene - они проверены практикой и хорошо себя зарекомендовали.
		2	Однородные двухсокетные кластеры - они дешевые, просты и понятные.
		3	Гибридные, содержащие процессоры разных архитектур - это модно и интересно.
41 2019-01-22	Какое свойство процессора наиболее важно для вычислительных задач?	1	Главное - максимальная теоретическая производительность в Гфлопс-ах.
		2	Иметь как можно больше однородных ядер - чтобы можно было эффективно распараллеливать алгоритм.
		3	Обеспечивать широкие возможности SIMD-ификации кода - использование векторизации дает большой реальный эффект.
		4	Иметь высокую пропускную способность подсистемы памяти - память должна успевать предоставлять процессору данные, над которыми он работает.
		5	это зависит от конкретного приложения - у всех разные требования.
42 2019-01-22	Максимальное число потоков, которые можно запустить на	1	2
2013-01-55	одном узле Blue Gene/P:	2	4
		3	8
		_	

status_dt	question	no	ans
		5	32
		6	Число потоков не ограничено
43 2019-01-22	Суперкомпьютер Blue Gene/Р является:	1	многопроцессорным кластером с однородной архитектурой
		2	массивно-параллельной вычислительной системой
		3	высокопроизводительной гибридной вычислительной системой
14 2019-01-22	С каким количеством процессоров непосредственно связан	1	4
1019-01-22	каждый вычислительный узел Blue Gene/ коммуникационной сетью « решетка» :	2	6
		3	8
		4	16
		5	128
15 2019-01-22	Коммуникационная сеть «дерево» Blue Gene/Р используется для:	1	выполнения 2-ух точечных передач большого объема
2019-01-22		2	выполнения коллективных операций MPI при соблюдении определенных условий
		3	выполнения любых коллективных операций МРІ
		4	для доступа к файловой системе
46 2019-01-22	Максимальный объем доступной памяти достигается при запуске паралллельных программ на Blue Gene/P в режиме:	1	DUAL
2019-01-22		2	SMP
		3	VN
		4	не зависит от режима запуска
47 2019-01-22	задачи на сооственные значения на суперкомпьютере	1	Неявные итерационные методы показывают более низкую точность вычислений.
	BlueGene/P?	2	2 массивно-параллельной вычислительной системой высокопроизводительной гибридной вычислительной системой 1 4 2 6 3 8 4 16 5 128 1 выполнения 2-ух точечных передач большого объема 2 выполнения коллективных операций МРІ при соблюдении определенных условий 3 выполнения любых коллективных операций МРІ 4 для доступа к файловой системе 1 DUAL 2 SMP 3 VN 4 не зависит от режима запуска 1 Неявные итерационные методы показывают более низкук точность вычислений. 2 Для прямых методов нельзя эффективно использовать параллельное быстрое преобразование Фурье. 3 Существуют эффективные методы
		3	Существуют эффективные методы распараллеливания перемножения матрицы на вектор с учетом параллельного быстрого преобразования Фурье.